
Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

1

A Bit Vectors Algorithm for Accelerating Queries in Multilevel Secure

Databases

Ramzi A. Haraty and Imad Rahhal

Lebanese American University

P.O. Box 13-5053 Chouran

Beirut, Lebanon 1102 2801

Email: rharaty@lau.edu.lb

Abstract

 In this paper, we present an algorithm called

the Bit Vectors Algorithm or BVA based on bit

vectors to accelerate queries in multilevel secure

database systems. This algorithm recovers query

output from single-level relations in a faster and

more space-efficient manner than most previous

work performed on this subject. In addition, the

BVA algorithm does not produce spurious or extra

tuples.

1. Introduction

 Multilevel secure databases are becoming more

prevalent. Multilevel databases partition multilevel

relations into single-level relations and store each

one separately. This results in poor performance

since multilevel queries would results in applying

repeated joins to single-level relations, which is

rather expensive. Moreover, previous work

[3][4][7][8] has shown that is it prone to spurious

tuples, which is rather a serious problem in the

world of databases. This work proposes an

algorithm – BVA – that is faster and more space

efficient than previous methods.

 This paper is organized as follows. Section 1.1

starts with a description of some access control

mechanisms used to maintain data confidentiality

in secure database systems. Then, the concept of

polyinstantiation and its effects on multilevel

recovery algorithms is described, followed by an

explanation of multilevel relations. In section 2.0

an overview of the previous work on this subject is

provided to give way to the BVA algorithm, which

is the core of this paper. Section 3 presents the

BVA algorithm and its data structures. Section 4

contains the conclusion comparing the BVA

algorithm to related work, namely, the Sea View

Model and the DVA algorithm.

1.1 Security Policies

 Many types of security policies or access

control mechanisms have been integrated into

database systems to provide data security. Two

well-known access control mechanisms are the

MAC and DAC mechanisms [2]. The DAC

mechanism, or Discretionary Access Control

mechanism, is usually implemented in most

commercial products. In this mechanism, the

owner of an object (i.e., file, directory, etc.)

decides who can access his/her object and in what

manner (i.e., read-only, write-only, etc.). The

Mandatory Access Control or MAC mechanism,

developed by Bell and LaPadula [1], does not

leave protection decisions of objects to the

discretion of the owners. The system enforces the

protection decisions. This mechanism defines a

database by its subjects and objects. A subject is

an active entity such as a process and an object is a

passive entity such as a data item or table. Subjects

have clearance levels and objects are assigned

sensitivity levels (i.e., Top Secret, Secret,

Confidential and Unclassified). In order for a

certain subject to access an object, one of

following two conditions must be satisfied

(depending on the type of access):

1- The Simple Security Policy: A subject X can

read access object Y, if X’s clearance level

dominates (is greater than or equal to) Y’s

sensitivity level.

2- The *-Policy: A subject X can write access

object Y, if X’s clearance level is dominated

by (is less than or equal to) Y’s sensitivity

level.

 In short, the MAC policy states that reads

should propagate downwards and writes should

propagate upwards. All security authentication

functions are stored in a TCB (Trusted Computing

Base) away from the DBMS. When a request for

object X by subject Y is issued, it is first

mailto:rharaty@lau.edu.lb

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

2

authenticated in the TCB. If Y can access X then

the request is forwarded to the DBMS; if not, then

the request is rejected.

1.2 Polyinstantiation

 Due to security and access control mechanisms,

some tuples in multilevel relations may be

polyinstantiated. A polyinstantiated tuple is a tuple

that exists more than once in a relation with the

same apparent key (refer to section 1.3) but with

some other attribute values being changed. This is

due to the fact that different subjects are

authorized to update or view different data. For

example, suppose that a subject X with clearance C

(Classified) is attempting to write a new value to a

data item Y with sensitivity S (Secret). The old

value in item Y is not viewable by subject X but

the new value written into Y by X is viewable (it

has X’s clearance level which C). To preserve the

old value of Y, a new tuple is inserted into the

relation with same apparent key (and same

attribute values except for Y in this case). Now X

can view the new value inserted into Y and Secret

and Top Secret users will view the two values (the

old value with sensitivity S and the new value with

sensitivity C).

1.3 Multilevel Relations

 A multilevel relation is a relation of the form R

(A1, C1, ..., An, Cn, TC) where Ai is an attribute

and Ci is its classification (or sensitivity level). TC

is the classification of the tuple. Ci belongs to the

domain of classifications for data items. We

denote A1 to be the apparent key of R.

 The concept of a key is a little bit different in

multilevel relations because keys can be

duplicated; this is why we refer to them as

apparent keys instead of just keys. The reason

behind this duplication of keys is polyinstantiation.

2. Related Work

 The following are two approaches for

maintaining and recovering multilevel relations

from single-level relations.

2.1 The Sea View Model

 The Sea View model [5] is considered as one of

the most important moves towards multilevel

secure relations. It consists of two algorithms: a

decomposition algorithm and a recovery

algorithm. The decomposition algorithm divides a

multilevel relation R into a set of single level

relations. The multilevel relation exists only at

logical level; single level relations are stored

physically. For every query, an output multilevel

relation is reconstructed from the single-level

relations using the recovery algorithm.

Unfortunately, the recovery algorithm of the Sea

View model suffers from the following:

1- Creation of spurious tuples in the output (due

to polyinstantiation),

2- Space inefficiency due to temporary tables,

and

3- Time inefficiency due to unions and joins,

which are two of the most expensive database

operations.

2.2 The DVA Algorithm

 The DVA algorithm [6], in short, is an

algorithm motivated by the recovery algorithm of

the Sea View Model based on domain vector

accelerators, DVAs, to accelerate the recovery of

multilevel relations from single-level relations.

DVAs accelerate joins between relations and thus

lead to reducing the response time of queries

requiring many joins. The DVA algorithm solves

the problems of the Sea View Model recovery

algorithm; it doesn’t create spurious tuples in the

output table and is space and time efficient. It

shows significant improvement especially in

environments where queries involve selections on

some (one or more) attributes of the multilevel

relations. In spite of these facts, this algorithm

uses a lot of temporary data structures, some of

which can be omitted to improve the algorithm’s

space efficiency without negatively affecting its

overall performance or its functionality.

3. The BVA Algorithm

 Perhaps the best way to describe how the

algorithm works is by going through an example.

In this algorithm, we will assume that a multilevel

relation is decomposed into single level relations

using the decomposition algorithm of the Sea

View model. Now, the BVA algorithm will be

applied to recover the multilevel relation from

those single level relations. Suppose, we have the

following multilevel relation representing all

missiles deployed in Iraq:

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

3

R = Iraqi Missiles

*Name Developed by

(devby)

Length (M) Range

(KM)

TC

AS30L U France U 3.65 U 10 U U

AS-9 Kyle U Russia U 6 U 90 C C

Al Hussein U Iraq U 12.2 C 650 C C

Aspide U Italy C 3.7 C 35 C C

Roland1/2/3 C France C 2.4 C 6.3 C C

Roland1/2/3 C Germany S NULL S 8 S S

Figure 1: The multilevel relation

 This multilevel relation is based on single-level relations as shown in figure 2.

Rname,u Rname,c

AS30L

AS-9 Kyle

Al Hussein

Aspide

Roland1/2/3

Rdevby,u,u Rdevby,u,c

AS30L

AS-9 Kyle

Al Hussein

France

Russia

Iraq

Aspide Italy

Rdevby,c,c Rdevby,c,s

Roland

1/2/3

France Roland 1/2/3 Germany

Rlength,u,u Rlength,u,c

AS30L

AS-9 Kyle

3.65

6

Al Hussein

Aspide

12.2

3.7

Rlength,c,c Rrange,u,u

Roland

1/2/3

2.4 AS30L 10

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

4

Figure 2: The decomposed single-level relations

 All relations containing only the key - i.e.,

Rname,u (base single level relation containing all

keys at classification level u) and Rname,c - are

referred to as base relations. Suppose we want to

recover the output of the query “Select name,

devby, length from R where range<>35”. The

following is a description of the steps of the BVA

associated with examples from the above the

relation (Ai denotes any attribute and A1 denotes

the apparent key).

1- For every relation RAi,x,y (single level

relation containing all entries form multilevel

relation having keys at classification level x

and Ai attribute values at classification level

y), excluding base relations, create a bit vector

BV.RAi,x,y denoting the presence or absence

of the keys at level x. BV.RAi,x,y should have

the same number entries as the number keys at

level x (can be found in relation Rkey,x).

Keys at level u = {AS30L, AS-9 Kyle, Al

Hussein, Aspide}

Keys a level c = {Roland 1/2/3}

BV.Rdevby,u,u = 1110

BV.Rdevby,u,c = 0001

BV.Rdevby,c,c = 1

BV.Rdevby,c,s = 1

BV.Rlength,u,u = 1100

BV.Rlength,u,c = 0011

BV.Rlength,c,c = 1

BV.Rrange,u,u = 1000

BV.Rrange,u,c = 0111

BV.Rrange,c,c = 1

BV.Rrange,c,s = 1

2- For every RAi,x,y excluding base relations

create a Mapping Vector Index, MVI.RAi,x,y,

mapping the position of the keys in RAi,x,y to

the position of the keys in RA1,x. The entries

in the MVIs are of the form (pib, pit) where

pib, Position In Base relation, is the position

of the key in the base relation; and pit,

Position In This relation, is the position of the

key in this relation (see figure 3).

MV.Rdevby,u,u MV.Rdevby,u,c

pib Pit Pib Pit

1

2

3

1

2

3

4

1

MV.Rdevby,c,c MV.Rdevby,c,s

pib Pit Pib Pit

1

1

1

1

Rrange,c,c

Roland

1/2/3

6.3

Range,u,c

AS-9 Kyle

Al Hussein

Aspide

90

650

35

Range,c,s

Roland

1/2/3

8

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

5

MV.Rlength,u,u MV.Rlength,u,c

pib Pit pib Pit

1

2

1

2

3

4

1

2

MV.Rlength,c,c MV.Rrange,u,u

pib Pit pib Pit

1

1

1

1

MV.Rrange,u,c MV.Rrange,c,c

pib Pit pib Pit

2

3

4

1

2

3

1

1

MV.Rrange,c,s

Pib pit

1

1

Figure 3: The mapping vector indices of the single-level relations

3- Create an Output Keys Vector OKVx

(contains all keys with classification x that

will appear in the output table) for all x:

a. As having a number of bits equal to

the number of entries in Rkey,x.

b. Read all relations having an attribute

participating in the selection criteria

of the query (Rrange,u,u and

Rrange,u,c at level u and Rrange,c,c

and Rrange,c,s at level c).

c. Get all entries from those relations

satisfying the selection criteria at

each level x (at level u we have

AS30L, AS-9 Kyle, and Al Hussein;

and at level c we have Roland1/2/3).

d. For every entry that succeeds, set its

position in OKVx to 1. The position

of an entry in OKVx can be found by

matching the key of this entry to the

key in Rkey,x and getting its position

in Rkey,x.

OKVu = 1110 (the first three

keys in Rname,u will appear in

output table)

OKVc = 1 (the first and only

key in Rname,u will appear in

output table)

4- Create a Polyinstantiated Keys Vector,

PKVx,y that contains all polyinstantiated

keys at level x by subjects at level y, for all

x,y such that x<y. For all attributes Ai

requested in the output of the query (name,

devby and length) except for the key (name)

do the following:

a. Create PKVAi,x,y = the ORing of

all BV.RAi,x,z where x<= z<y for all

z

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

6

PkVdevby,u,c = BV.Rdevby,u,u

= 1110

PkVdevby,u,s = BV.Rdevby,u,u

OR BV.Rdevby,u,c = 1110 OR

0001 = 1111

PkVdevby,c,s = BV.Rdevby,c,c

= 1

PkVlength,u,c = BV.Rlength,u,u

= 1100

PkVlength,u,s = BV.Rlength,u,u

OR BV.Rlength,u,c = 1100 OR

0011 = 1111

PkVlength,c,s = BV.Rlength,c,c

= 1

b. Set PKVAi,x,y = PKVAi,x,y AND

BV.RAi,x,y

PkVdevby,u,c = PkVdevby,u,c

AND BV.Rdevby,u,c = 1110

AND 0001 = 0000

PkVdevby,u,s = PkVdevby,u,s

AND BV.Rdevby,u,s = 1111

AND 0000 = 0000

PkVdevby,c,s = PkVdevby,c,s

AND BV.Rdevby,c,s = 1 AND

1 = 1

PkVlength,u,c = PkVlength,u,c

AND BV.Rlength,u,c = 1100

AND 0011 = 0000

PkVlength,u,s = PkVlength,u,s

AND BV.Rlength,u,s = 1111

AND 0000 = 0000

PkVlength,c,s = PkVlength,c,s

AND BV.Rlength,c,s = 1 AND

0 = 0

c. Create PKVx,y as the ORing of all

PKVAi,x,y

PKVu,c = PKVdevby,u,c OR

PKVlength,u,c = 0000 OR 0000

= 0000

PKVu,s = PKVdevby,u,s OR

PKVlength,u,s = 0000 OR 0000

= 0000

PKVc,s = PKVdevby,c,s OR

PKVlength,c,s = 1 OR 0 = 1

A 1-bit in position n in any vector

PKVx,y signifies that the nth entry in

Rkey,x is polyinstantiated . Therefore,

entry 1 in Rname,c that is Roland1/2/3 is

polyinstantiated.

5- Create POKVx,y (polyinstantiated output keys

vector) as the ANDing of PKVx,y and OKVx

POKVu,c = OKVu AND PKVu,c = 1110

AND 0000 = 0000

POKVu,s = OKVu AND PKVu,s = 1110

AND 0000 = 0000

POKVc,s = OKVc AND PKVc,s = 1

AND 1 = 1

6- Create an Output table, as shown in figure 4,

as follows:

a. Having a number of columns equal

to the number of fields, Ai, requested

in the output of the query (name,

devby and length)3 columns.

b. Scan OKVx for 1-bit entries (appears

in the output). If a 1 bit appears in

position n do the following for all Ai

attributes requested in the output:

i. If Ai is the key (i = 1) then

get the nth record from

RA1,x and store it under A1

column in output table. This

entry has classification x.

ii. Else, go to the nth entry in

BV.RAi,x,z where z = x

initially . If a 1 bit is found

in position n then get the pit

value of the entry in

MVI.RAi,x,z that has pib =

n. Let p = pit, get the p’th

entry from RAi,x,z and store

it under Ai column in output

table. This entry has

classification z. Else (if 1 bit

is not found in position n of

BV.RAi,x,z then) increment

z to the next higher level

and repeats this step.

c. Scan POKVx,y for 1-bit entries

(appears in the output and

polyinstantiated). If a 1 bit appears in

position n do the following for all Ai

attributes requested in the output:

i. If Ai is the key (Ai = A1)

then get the nth record from

RA1,x and store it under A1

column in output table. This

entry has classification x.

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

7

ii. Else, go to the nth entry in

BV.RAi,x,z where z = y

initially . If a 1 bit is found

in position n then get the pit

value of the entry in

MVI.RAi,x,z that has pib =

n. Let p = pit, get the p’th

entry from RAi,x,z and store

it under Ai column in output

table. This entry has

classification z. Else (if 1 bit

is not found in position n of

BV.RAi,x,z then) decrement

z to the next lower level and

repeats this step.

*Name Developed

by(devby)

Length (M)

AS30L U France U 3.65 U

AS-9 Kyle U Russia U 6 U

Al Hussein U Iraq U 12.2 C

Roland1/2/3 C France C 2.4 C

Roland1/2/3 C Germany S 2.4 C

Figure 4: The output table of the given query

4. Conclusion

 The BVA algorithm is an enhancement over the

previous algorithms. Compared to the recovery

algorithm of the Sea View model, which was one

of the earliest and most important attempts

towards multilevel database security, the BVA has

the following advantages:

1. No spurious tuples in the output table due of

polyinstantiation.

2. No time inefficiency because the BVA

algorithm does not depend on the use of joins

and unions like the Sea View model algorithm

to create the output table.

 The BVA algorithm has the advantages of the

DVA algorithm over the recovery of the Sea View

model. In addition, it has some advantages over

the DVA algorithm itself. Those advantages

mainly stem from the fact that the BVA reduces

the temporary storage used to create the output

table. The BVA algorithm eliminates the following

data structures that are used by the DVA

algorithm:

1. The Domain Vector Tables (referred to as

DVTs in the DVA algorithm) used to map

keys to their positions in the primary relations.

2. The Domain Value Indices (referred to as

DVIs in the DVA algorithm) of primary

relations.

3. The Domain Vectors (referred to as DVs in

the DVA algorithm) of primary relations.

4. The participation of primary relations in the

creation of the Polyinstantiated Domain

Vectors (referred to as PDVs in the DVA

algorithm).

5. Select Omit Tables (referred to as SOTs in the

DVA algorithm), which are used to produce

the Output table.

References

[1] Bell, D. and LaPadula, L. “Secure Computer

Systems: Unified Exposition and Multics

Interpretation”. Technical Report. The Mitre

Corporation. 1976.

[2] Jackson, J. “MAC & DAC Brief”.

www.garrison.com/html/docmacdac.html. 2001.

[3] Jajodia, S. and Sandhu, R. “Toward a

Multilevel Secure Relational Data Model”.

Proceedings of the ACM SIGMOD International

Conference on Management of Data. Denver,

Colorado, May 29-31, 1991, pages 50-59.

[4] Jajodia, S. and Sandhu, R. “A Novel

Decomposition of Multilevel Relations into

Single-Level Relations”. Proceedings of IEEE

Symposium on Security and Privacy. Oakland,

California, May 20-22, 1993, pages 300-313.

[5] Lunt, T., Denning, D., Schell, R., Hechman,

M., and Shockley, W. “The Sea View Security

http://www.garrison.com/html/docmacdac.html

Proceedings of the CSITeA 2002, Foz du Iguazo, Brazil. June 6-8, 2002.

8

Model”. IEEE Transactions on Software

Engineering, Volume 16, Number 6, June 1990.

[6] Perrizo, W. and Panda, B. “Query Acceleration

in Multilevel Secure Distributed Database

Systems”. Proceedings of the 16
th

 National

Computer Security Conference. Baltimore,

Maryland, September 20-23, 1993.

[7] Sandhu, R. and Jajodia, S. “Restricted

Polyinstantiation or How to Close Signaling

Channels Without Duplicity”. Proceedings of the

third RADC Workshop on Multilevel Database

Security. Castile, New York, June 1990, pages 7-

12.

[8] Sandhu, R. “Design and Implementation of

Multilevel Databases”. Proceedings of the 6th

RADC Workshop on Multilevel Database Security.

Southwest Harbor, Maine, June 1994.

